List of basic formulas related to Fourier series, as well as examples of solutions:
Basic formulas of Fourier series
- Formula for expanding a function into a Fourier series:
For a periodic function ( f(x) ) with period ( T ):
[
f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos\left (\frac{2\pi nx}{T}\right) + b_n \sin\left(\frac{2\pi nx}{T}\right) \right)
] - Fourier coefficients:
- Zero coefficient:
[
a_0 = \frac{1}{T} \int_{0}^{T} f(x) \, dx
] - Coefficients ( a_n ):
[
a_n = \frac{2}{T} \int_{0}^{T} f(x) \cos\left(\frac{2\pi nx}{T}\right) \, dx
] - Coefficients ( b_n ):
[
b_n = \frac{2}{T} \int_{0}^{T} f(x) \sin\left(\frac{2\pi nx}{T}\right) \, dx
]
Examples of solutions
- Example 1: Rectangular signal function:
Consider a function ( f(x) ) equal to 1 on the interval ( [0, T/2] ) and -1 on the interval ( [T/2, T] ).
- We calculate ( a_0 ), ( a_n ) and ( b_n ):
[
a_0 = 0
]
[
a_n = 0 \quad (n \geq 1)
]
[
b_n = \frac{2}{n\pi} (1 – (-1 )^n)
]
Thus, the Fourier series will contain only odd harmonics.
- Example 2: Function ( f(x) = x ) on the interval ( [-\pi, \pi] ):
- We calculate the coefficients:
[
a_0 = 0
]
[
a_n = 0 \quad (n \geq 1)
]
[
b_n = \frac{2(-1)^{n+1}}{n}
]
The Fourier series will look like:
[
f(x) = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin(nx)
]